Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
نویسندگان
چکیده
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The high adsorption energies indicate chemisorption of hydrogen peroxide on graphene. It is found that defect free graphene exhibits semimetallic behavior, while graphene with Stone-Wales defect shows semiconducting property. The charge is transferred from hydrogen peroxide to graphene. At low concentration of this donor molecule, defect free and defective graphene become n-type semiconductors. The energy band gap is decreased and metallic behavior is observed in graphene by increasing the number of hydrogen peroxide. The sensitivity of the electronic property of graphene to the presence of hydrogen peroxide suggests that these nanostructures are good choice to design biosensor for hydrogen peroxide detection. 2014 JNS All rights reserved Article history: Received 17/1/2014 Accepted 25/2/2014 Published online 1/3/2014
منابع مشابه
Hydrogen Peroxide Adsorption on Graphene with Stone-Wales Defect
To explore the possibility of using graphene based biosensor, adsorption of hydrogen peroxide on graphene has been investigated using density functional theory. The electronic properties of defect free and defective graphene in the presence of different number of hydrogen peroxide have been studied. The graphene with the most stable configuration defect named as SW defect is considered. The hig...
متن کاملStudy of Stone-wales Defect on Elastic Properties of Single-layer Graphene Sheets by an Atomistic based Finite Element Model
In this paper, an atomistic based finite element model is developed to investigate the influence of topological defects on mechanical properties of graphene. The general in-plane stiffness matrix of the hexagonal network structure of graphene is found. Effective elastic modulus of a carbon ring is determined from the equivalence of molecular potential energy related to stretch and angular defor...
متن کاملHallmark of perfect graphene.
Using first-principles calculations we show that the adsorption of atomic hydrogen on graphene opens a substantial gap in the electronic density of states in which lies a spin-polarized gap state. This spin is quenched by the presence of a rotated C-C bond (a Stone-Wales defect) adjacent to or distant from the H atom. We explain these findings and discuss the implications for nanotubes and magn...
متن کاملSensitivity of Perfect and Stone-Wales Defective BNNTs Toward NO Molecule: A DFT/M06-2X Approach
The monitoring and controlling of environmental pollutions are very important in biological and industrial processes, and a great interest is growing with the development of suitable gas–sensitive materials and hazardous chemical removal devices. In this work, the highly parameterized, empirical exchange–correlation functional M06–2X were employed to investigate the electronic sensitivity of pe...
متن کاملEffect of Defects on Mechanical Properties of Graphene under Shear Loading Using Molecular Dynamic Simulation
Graphene sheet including single vacancy, double vacancy and Stone-Wales with armchair and zigzag structure was simulated using molecular dynamics simulation. The effect of defects on shear’s modulus, shear strength and fracture strain was investigated. Results showed that these shear properties reduce when the degrees of all kinds of defects increase. The dangling bond in SV and DV defected gr...
متن کامل